
Monitoring and Testing with Case Observer Automata:
an Industry Report

Anders Hessel
Xware AB and Mälardalen University

Xware AB, Sveavägen 151, SE-113 46, Stockholm, Sweden
IDT, Mälardalen University, P.O. Box 883, SE-721 23, Västerås, Sweden.

Email: anders.hessel@xware.se and anders.hessel@mdh.se

Abstract—In a highly configurable system, new or changed
configurations may have to be tested in a running environment.
To elicit high level information from such system, a monitoring
solution must be able to: sort out the interesting data, connect
the related data, draw conclusions about the data, and report
the conclusion. The conclusions can be helpful to verify that the
new configuration has the desired functionality. To continuously
monitor requirements and try to find specific erroneous pattern
is helpful during testing but when the system is deployed.

In this industry report we present the Case Observer
Automata modeling language (COAml) that aims to solve these
issues. The COAml works with workflows where related data
are put into cases, which can be seen as instances of the
same observation pattern. In a case, parallel activities can
be traced with synchronization points and timers. The Case
Observer Language can be integrated into most forms of
tracing/monitoring such as business rule monitoring, coverage
tracing, static program analysis, log analysis, etc. We are
currently integrating the language in the xTrade Alarm Server
at Xware, and there are plans to reintegrate the COAml into
UPPAAL CoVer.

Keywords-formal methods; observers; real-time; system
surveillance; model verification; workflow monitoring; business
monitoring; coverage critera, model-based testing, YAWL

I. INTRODUCTION

A. Abstract and Combine Information

Xware1 makes a product called xTrade Business Hub,
which is a modular system for business communication. It is
highly configurable and when a business integration is done
with xTrade (mainly by configuration of xTrade system(s))
there is a need for the user to test and verify the resulting
functionality.

Even if xTrade has built-in log possibilities it can be
cumbersome to find and read logs to troubleshoot new
configurations. To automate test cases with confirmation of
an intended message path is possible but labor intensive,
especially for a deployed system.

The xTrade Alarm Server is a monitoring and reporting
tool, which can filter logs and system activities from a
system into events. It can also combine events to new

1http://www.xware.se/

events, i.e., an event can produce an alarm or be input to
combination rule(s).

Our challenge is to raise the abstraction level for the
combination rules into general observer automata separated
in case instances. We want to be able to follow several
workflows simultaneously. The workflows may be distinct
business cases.

Our motivations for doing this are:
1) to utilize the alarms as verdicts for test cases and
2) to be able to model requirements for which we can

make observations.
As a simple example we may want to detect if a computer

takes too long time to come alive again after being shutdown.
For this we need to filter out up and down signals for the
computer. We also need a timer to expire when the stipulated
time is due. As we do not want to make a separate event
filter for each computer, we add the name of the computer
as a parameter. At the combination rule we now have to put
signals about the same computer in the same case.

B. Motivation of Workflows in Observers

Workflow models are particularly helpful when we have
ordering constraints that must be satisfied. Let ei denote
an event, say that we receive a sequence of observations
(e1, e21, e22, e31, e23, e32, e4) is this correct or not? What if
we got (e1, e31, e21, e22, e23, e32, e4)? Things clear up a lot
when we are able to express the condition for checking the
sequence as a workflow with parallel subflows see equation
1.

e1

{
e21, e22, e23
e31, e32

}
e4 (1)

Now it is clear that the sequences e21, e22, e23 and e31, e32
can be done in parallel, but must not start before e1 and they
must both end before e4.

C. Contributions and Challanges

In this paper we present ongoing work with a language
that we call Case Observer Automata modeling language,
COAml, which has some features that we believe will make
it easier to specify high level automata or workflows for
business surveillance from an observational perspective. As



Logs/events

Obs

COAml
Obs

xTrade Alarm Server

oftpc

oftps

EventR

EventR

EvenR
CombR

CombR
Observations/Alarms

Test CheckTest Exec

Test signals processing

xTrade System(s)

COAml

Figure 1. The test and monitoring environment

we can follow some of the internal activities in the system
we are able to make a closer verification, i.e., we can make
a kind of grey-box verification.

The contributions of the paper are:
• A method that make the verdict of a test case easier.
• A three step method for high level reasoning: filter, sort,

and use automata.
• A new multi-purpose observer language with support

for:
– Cases; Collections of related states in cases.
– Multiple States; Follows each of the possible paths

which may result in multiple states. Thus if there
is a path to a reporting point, it will be found.

– Timers; Timers can be set and removed for a case.
– Workflows; Workflow concepts as multiple split

of subflows and required synchronization points
(merge of flows).

– State Removal; Flushing of states according to
matches.

II. CONTEXT

A. Test and Monitoring Setup

In Figure 1 the test and monitoring setup for the an xTrade
configuration is shown. The xTrade systems are stimulated
with data. The figure includes a set of modules that are in
use for the test case. A message that is passed through the
system can be traced, as each of the modules that pass by
the message will log its activity.

Below the xTrade system(s) the xTrade Alarm Server is
depicted. The events traced from the system are filtered
(with predicates on some fields) by event rules marked
(EventR). In fact, part of the event rule filtering are done
in the client to avoid unnecessary data traffic. If an event
rule triggers, it selects parameters and sends out the result

to its listeners which can be a backend or a combination
rule. This procedure is common for all rules that triggers.

There are a variety of backends whose function is to send
out a message or in another way inform the environment
about the happening. A combination rule combines different
notifications, i.e., triggered event rules or triggered combi-
nation rules.

In the figure we show automata combination rules with a
COAml observer attached. Each observer accepts a language
that is determined by the context of its combination rule.
The notifications from other rules are sent to the observers
as traps. The inputs for a combination rule is defined by
connecting ports from other rules. All report possibilities in
the observer becomes a port of the combination rule.

OFTP is a communication protocol supported be xTrade.
In the figure test signals are sent to an internal processing
step that passes the message to an OFTP client that connect
to an OFTP server on another xTrade instance. The different
modules log to the xTrade Alarm Server some of their
activities. If the path taken by the message is correct the
xTrade Alarm Server triggers the intended rule(s) and the
verdict is easy for the oracle module Test Check.

B. The Environment of the Observer

We will use the term monitoring application to denote
the immediate environment of the observer as we want to
be as general as possible for our description or the COAML
language.

Our observer framework implementation is a general
purpose library whose API can be used in other products.
We first developed the langugage to define coverage criteria
and to be effective for test case generation.

The monitoring application defines the run-time interface
for the observer work with, by (programatically) registering
the possible traps. The observer specifications can then refer
to registered traps and their parameters. The configuration
done by the user is thus done towards the monitoring appli-
cation. This makes it possible to have domain specific help
in the monitor applications without loosing the generality of
the COAML language.

III. COAML DESCRIPTION

In this section we will describe the COAML language.
COAML is an observational language that is designed to
be able to report when something interesting happens. The
reports can be gathered and saved for, e.g., coverage detec-
tion, where a part of a coverage criterion has been fulfilled.
The reports can also as in the xTrade Alarm Server case be
directly sent to a recipient.

A running COAML system will be called an observer
for simplicity. Basically an observer receives traps of a
happening in the system/trace/code/model that it is observ-
ing. Observers also receive timeouts from the monitoring
application, but we will consider timeouts only as a special



Resolver
Observer Case(s)Monitoring Application

report, settimer, removetimer

trap,timeout
Case

Figure 2. The environment in which the observer works.

type of traps. The observer change state when it receives
at trap. The observer also as a side effect communicates
its reports to the monitoring application. If the monitoring
application is tracing coverage to facilitate test case selection
then the states would be the unsatisfied information and the
reports would be the fact that a coverage item was satisfied.

A. Case Abstraction

One of the features in the COAML is the ability to
separate the activity of the observer into cases, i.e., when
receiving a trap not the full observer state is working but
only the relevant case(s). This is made possible by a case
identifier and a case resolving procedure that will find the
right case(s) and pass the trap to them. In figure 2 an
observer is depicted with its environment. The case resolver
decides to which observer case(s) the trap shall be sent.

For a case identifier with one field, we could have a trap
with a parameter, e.g., named var, that is matched with the
field of the case identifier. Say we trace definition-use pairs
for a variable, then we could have the variable as the case
identifier, thus the observer activities are split by the variable
used.

The real benefit for the modeler is that there is no need
to handle traps that is not related to the case and thus the
model can be kept simple. In the xTrade Alarm Server there
are also functions to force some specific instances.

Unresolvable traps: A trap that fails to fully specify
the case identifier, e.g., it specifies one of two fields of the
case identifier, will be sent to all cases that matches the
existing field. The observer assumes that this is intentional.
It must then be the case that each field in the case identifier
uniquely specifies the case and thus only one case is selected.
Moreover the first received trap must be specifying the full
case identifier. We have an idea of an algorithm that would
solve underspecified traps in general. So far we have not
had the chance to implement and validate the algorithm.

B. Observer State

In the observer we have a set of items (markers in Petri
Nets terminology, or “threads”), each item is placed at a
location and has an evaluation for set of parameters (specific
to the location). Such set of items and a set of timeouts
defines a state of a case instance. The state of the full
observer is a combination of the case instances.

t
l1(X)

rp(p1)

l3()

l4(p1)
remove l4(X)

add l3()

add rp(X)

X==t.var
with
trap(t)

Binding scope of the trap rule

Figure 3. A graphical representation of a rule.

C. Observer Transitions

Transitions of individual states (items) in a case instance
are done according to rules. There are two types of rules,
triggered rules and reduce rules. Triggered rules fire when a
trap (or timeout) is received. Reduce rules fire automatically
when it is possible. When a trap has been received and
the trap rules have been exercised, reduce rules may be
triggered. The set of reduce rules keep on firing until a
fixpoint is reached, i.e., no reduce rule can be fired. Both
rule types have conditions and actions.

In a transition the conditions also has the function of
variable binding evaluation. A special type of “condition”
is the assign, where a new variable can be assigned a value.
There is always one value that is assigned although there
can be several solutions. In the actions new items can be
created and timeouts can be set or removed.

1) Trap Rules: When a trap is received and delegated
to a case instance, the items that are in a location which
has an outgoing rule that trigger on the trap is examined.
The conditions on the rules are evaluated, and if an item
cannot satisfy any rule it stays in its location. If for an item
a rule is triggered (i.e., the trap matches and the conditions
if the rule is satisfied) by at least one rule the original item
is removed. A triggered rule executes its action part, which
may include actions to create new items, i.e., successors to
the item. Observe that more than one rule can be triggered
and each rule can add more than one successor. In the case
where a rule replaces one item with several new, the COAML
construction can be used as a workflow split.

In figure 3 a graphical representation of a trap rule is
shown. The rule triggers when a trap t is received and there
is an item in location l1, with the condition that the variable
named var of the trap shall be equal to the first parameter of
l1 which is assigned the name X for use in the rule. There
are three actions, add an item with the same parameter X to
the reporting location rp, add an item to l3 that do not have
any parameter and remove, if it exists, an item in location
l4 which parameter equals X.



Binding scope of the reduce rule

l3()
add l3()

add l2(X)
l1(X)

l2(Y)

Reduce

X==Y
with

Figure 4. A graphical representation of a reduce rule.

D. Reduce Rules

Reduce rules take no input, instead they are triggered
whenever possible after traps have been received and trap
rules have been fired. There is a clear two phase division.
No reduce rules are allowed to fire before all effects of a trap
have been carried out. Reduce rules are tested in the order
they appear. If a reduce rule fires then the reduce rules are
tested again for the new set of items.

In figure 4 a graphical representation of a reduce rule is
shown. The rule triggers when there are two items in the case
(situated in location l1 and l2) with equal parameters. There
are two actions in this case, (i) to add the same l2(Y) back
again (X equals Y), and (ii) to add an item in the location
l3 without parameter. A reduce rule that uses at least two
items corresponds to a workflow join. Even if there is an
immediately split (by adding multiple items) the reduce rule
is still a synchronization point.

E. Some Keywords

To exemplify the rules of the language we use a textual
syntax (as supported by our parser). There are some key-
words to notice; the rule keyword starts a rule statement,
the trap and timeout keywords followed by the id define
the trap or timeout that triggers the rule, the with keyword
starts a sequence of conditions, the action keyword starts a
sequence of actions. In an action sequence the add keyword
followed by a parameterized location adds a new item to the
case, the settimer keyword followed by the timer id (with
the length of the time until the timer expires as parameter)
starts a timer and the removetimer keyword followed by
the timer id removes a timer.

The begincase keyword starts a rule that is triggered only
when the case instance is created. The true keyword can be
used as a condition when no other conditions are needed.
The endcase keyword destroys the case instance. If there
are any items left when the endcase is reached the observer
can be configured to report it as a problem.

We use a prefix “ID.” to address values in the case
identifier and a prefix “trap.” to address values in the
received trap. Assign is denoted as “:=” and equality “==”.

IV. EXAMPLES

In the examples we will only show the transitions (rules)
of an observer specification. There are also definitions of the
locations (nodes) with their parameter types. Additional the
observer can take parameters which are bound to a set of
predefined evaluations, i.e., the variables can have multiple
values.

A. Simple Examples

Definition-use pair observer: In the definition-use pair
example below we use two traps def and use. We assume
that the traps have at least two parameters named edge and
var. Further we assume that there is a case identity that has
one field named var. Incoming traps def and use are directed
to the case where their var field is matching the var field of
the case identity, i.e., if the definition or use is concerning
a variable x the case for that variable will be used.

Line 1 simply declare that the nodef location without
parameters is the initial item added at instance creation.
The rule that starts at line 2 accept def traps from items in
location nodef. The variable E is free and assigned the value
of the edge parameter in the received def trap. The edge (id)
is remembered as a parameter of the hasdef location.

The rule that starts in line 5 is triggered by a trap use
in a hasdef location. The variables E2 and V are free and
assinged the edge parameter of the trap and the field var
of the case identifier ID respectively. We put back the item
we started with (hasdef(E)). The dupair location is a report
point (or satisfied coverage item) where the variable and the
edge pair is reported.
1 begincase add nodef();
2 rule nodef() trap def
3 with E := trap.edge
4 action add hasdef(E);
5 rule hasdef(E) trap use
6 with E2 := trap.edge, V := ID.var
7 action add hasdef(E),
8 add dupair(V, E, E2);
9 rule hasdef(E) trap def

10 with E2 := trap.edge
11 action add hasdef(E2);

The rule started in line 9 simply switches the parameter
of the hasdef location to the last edge where the variable
was defined. We note that there is a way to include fields of
the case identity in the report. If in- and out-of-scope traps
are availabe we could report uninitialized use etc.

Downtime observer: In the next example we will show
how to monitor the downtime of a service and report if it is
too long. We assume that we have two traps up and down
which both have at least one parameter that identifies the
service (or computer) that is the subject of the trap, e.g.,
logs the up or down. The case identifier has a field name
that identifies the service. We have in this example also a



timer called dt that is set to 5 minutes (the time unit is in
seconds in this case) when we receive the knowledge of the
service going down by the trap down.

In the rule at line 6 the service is up again. The timer is
then removed and the case is closed. If on the other hand
the timeout dt is received first three things are done (i) a
new timer is started now with 10 minutes interval, (ii) the
waitup node is put back, and (iii) we report that the service
has been down too late by adding an report item. I.e., there
will be a new report every 10 minutes.
1 begincase add init();
2 rule init() trap down
3 with true
4 action settimer dt(300),
5 add waitup();
6 rule waitup() trap up
7 with true
8 action removetimer dt,
9 endcase;

10 rule waitup() timeout dt
11 with C := ID.name
12 action settimer dt(600),
13 add waitup(),
14 add report(C);

B. Examples with Workflow and Reduction

A parallel workflow is shown below. At the initialization
two parallel (sub)flows are started start1 and start2. The
flows are waiting for trap t1 and trap t2 respectively. Al-
though the flows are short the principal should be clear. The
reduce rule can be triggered first after each subflow is done,
i.e. the subflows has to be in sync to progress.
1 begincase add start1(), add start2();
2 rule start1() trap t1
3 with true
4 action add done1();
5 rule start2() trap t2
6 with true
7 action add done2();
8 reduce done1(), done2()
9 with true

10 action endcase;

In our last example we assume that the observer has a
parameter V bound to a set of three different values, thus
the add start3(V) command generates three items The trap
t has a parameter var and will be received three times
with each value from V. After each trap the reduce rule
at line 5 will be activated. The result is that a done location
will be removed and the collect locations parameter will be
decreased. After receiving the three values the reduce rule
in line 8 will be triggered. For n values we have n! number
of legal sequences, thus the parallel expression power has
been shown useful.

1 begincase add start3(V), add collect(3);
2 rule start3(X) trap t
3 with X == trap.var
4 action add done(X);
5 reduce done(X), collect(N)
6 with N > 0, M := N - 1
7 action add collect(M);
8 reduce collect(N)
9 with N == 0

10 action endcase;

V. RELATED WORK

COAML2 is a development of the Observer Language [1]
used in UPPAAL CoVer [2], [3]3 that is an extension of
UPPAAL [4]. This observer language makes it possible
to express structural, data-flow, and projectional coverage
criteria. There is also inspiration taken from YAWL [5] (Yet
Another Workflow Language), which is a workflow language
developed from (Colored) Petri Nets [6], [7]. YAWL seem
to become an important language for workflow modeling.
As an example there is work on transforming the Business
Process Execution Language (BPEL) to YAWL[8].

A. Comparison of Concepts YAWL/Petri Nets, Observers,
and Case Observers

We will refer to the coverage observers as Observers.
Places and Markers: Places in YAWL/Petri Nets are

the same as locations in Observers/COAML. Markers in
YAWL/Petri Nets are the same as items in COAML and
unsatisfied coverage items in Observers. In YAWL/Petri Nets
multiple identical markers is possible this is not the case in
Observers/COAML.

Startup: In Observers each state change in the model
can initiate a new item from a special state called start. In
YAWL/Petri Nets there is one start state called START for
the whole workflow. In COAML each new case instance run
the actions in the begincase rule, and thus several items can
exist when the first trap is received (which also can be a
timeout).

Timers: YAWL has a time service and task timers,
COAML has timers per case. Observers lack the concept
of time.

Instances: YAWL has multiple instance tasks (atomic and
compound), COAML has Cases. Directing observations is
not an issue in YAWL as it is the YAWL instance task that
is the object under observation.

Split and Join: YAWL has AND (all), OR (some), and
XOR (one) splits, in COAML all these three are defined
by the action part of trap and reduce rules. YAWL is more
specific. In COAML multiple rules can trigger by the same
trap which makes other kinds of behavior possible. YAWL
has AND (all) and XOR (one) joins, but also the more

2http://www.hessel.nu/, (anders@hessel.nu)
3http://www.uppaal.org/CoVer/, (cover@hessel.nu)



complex OR join where all markers in (the OR split to OR
join) workflow has to be collected. In COAML the reduce
rules is the same as AND join, the XOR join is done by
adding the same location from the different subflows (which
can only be one if the split is excluded OR by conditions).

Observations: In COAML one trap can trigger many
rules, whereas one YAWL task is just one task. If no
condition is true for the trap COAML reports an non-
conforming error. COAML is made to make observation and
report higher order observations. YAWL is made to define a
workflow.

Reset: Reset Petri Nets and YAWL may reset all markers
from a subset of the places. In COAML the remove action
can be used to delete items. To match multiple items in a
location some parameters can be set to a wildcard.

VI. APPLICATION AREAS AND FUTURE RESEARCH
COLLABORATIONS

There are several application areas for the proposed lan-
guage COAML. On the one hand it can be used to monitor
an abstract system. On the other hand it can be used in quite
intimate tracing, it all depends on which kind of traps the
monitored system can produce.

The observers have an origin in the model-based testing
world where they have been used to specify and to observe
coverage criteria. In that case a test case generation engine
generates a test suite that fulfills the given coverage criterion.
The reporting of the observer is used as guidance for the test
case generation. Another area that is currently targeted for
the (case) observers is system surveillance, also including
business monitoring. In fact, as the observers are meant from
the start to be non-intrusive there is no difference between
observing a running system and observe the development of
a search branch for a model checker. The observers can also
be used in a model checker as a verification property.

Other possible application areas are log browsing, which
is also a form of pattern matching as well as (static/dynamic)
code/model analysis, e.g., looking for uninitiated variables or
race conditions. For instance a code analysis tool could use
a configurable number of observers to find flaws in the code.
Implementing a new flaw type could be done by defining a
new observer automaton.

Currently the development is done in parallel for a com-
mercial product and for an academical tool. As the APIs now
are more well defined than before and we seek colaboration
partners that have use of observer libraries. Our ambition
is that the COAml language and our libraries shall be the
number one choice when there is a need to build a tailored
tool that needs observational capabilities.

VII. SUMMARY

We have shown how the COAML is used and how it lets
its users specify parallel sections with concurrent activities
without raising the complexity of the observer. The case

solving mechanism separates the unrelated traps. The related
traps are sent to the same case. Within the cases there can
be several interacting activities, suitable for surveillance of
parallel workflows.

ACKNOWLEDGEMENTS

The author wish the thank the Hi5 Mobility Program and
Xware AB that have sponsored this research project. Many
thanks also to the anonymous reviewers and Paul Fersman
Pettersson for improving the text.

REFERENCES

[1] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson, “Specifying
and generating test cases using observer automata,” in Proc.
4th Int. Workshop on Formal Approaches to Testing of Software
2004 (FATES’04), ser. LNCS, J. Gabowski and B. Nielsen,
Eds., vol. 3395. Springer–Verlag, 2005, pp. 125–139.

[2] A. Hessel and P. Pettersson, “CoVer - A Test Case Gener-
ation Tool for Real-Time Systems,” in Testing of Software
and Communicating Systems: Work-in-Progress and Position
Papers, Tool Demonstrations, and Tutorial Abstracts of Test-
Com/FATES 2007, ser. LNCS, A. Petrenko, M. Veanes, J. Tret-
mans, and W. Grieskamp, Eds. Springer–Verlag, 2007, pp.
31–34.

[3] A. Hessel, K. G. Larsen, M. Mikuionis, B. Nielsen, P. Petters-
son, and A. Skou, “Testing real-time systems using uppaal,” in
Formal Methods and Testing, ser. LNCS, R. M. Hierons, J. P.
Bowen, and M. Harman, Eds., vol. 4949. Springer–Verlag,
2008, pp. 77–117.

[4] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nut-
shell,” Int. Journal on Software Tools for Technology Transfer,
vol. 1, no. 1–2, pp. 134–152, 1997.

[5] W. van der Aalst and A. ter Hofstede, “Yawl: Yet another
workflow language,” in Information Systems, vol. 30(4), 2005,
pp. 245–275.

[6] K.Jensen, “Coloured petri nets: A high level language for
system design and analysis,” in Advances in Petri Nets, ser.
LNCS, G. Rozenberg, Ed., vol. 483. Springer–Verlag, 1990.

[7] F. Gottschalk, M. H. Jansen-vullers, and H. M. W. Verbeek,
“Protos2cpn: Using colored petri nets for configuring and
testing business processes,” in In Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN, 2006.

[8] A. Brogi and R. Popescu, “From bpel processes to yawl
workflows,” in WEB SERVICES AND FORMAL METHODS,
ser. LNCS, M. Bravetti, M. Nez, and G. Zavattaro, Eds., vol.
4184. Springer–Verlag, 2006, pp. 107–122.


